Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. j. microbiol ; 46(4): 1045-1052, Oct.-Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-769662

ABSTRACT

Abstract High copper (Cu) levels in uprooted old vineyard soils may cause toxicity in transplanted young vines, although such toxicity may be reduced by inoculating plants with arbuscular mycorrhizal fungi (AMF). The objective of this study was to evaluate the effects of AMF on the plant growth, chlorophyll contents, mycorrhizal colonization, and Cu and phosphorus (P) absorption in young vines cultivated in a vineyard soil contaminated by Cu. Commercial vineyard soil with high Cu levels was placed in plastic tubes and transplanted with young vines, which were inoculated with six AMF species (Dentiscutata heterogama, Gigaspora gigantea, Acaulospora morrowiae, A. colombiana, Rhizophagus clarus, R. irregularis) and a control treatment on randomized blocks with 12 replicates. After 130 days, the mycorrhizal colonization, root and shoot dry matter (DM), height increment, P and Cu absorption, and chlorophyll contents were evaluated. The height increment, shoot DM and chlorophyll contents were not promoted by AMF, although the root DM was increased by R. clarus and R. irregularis, which had the greatest mycorrhizal colonization and P uptake. AMF increased Cu absorption but decreased its transport to shoots. Thus, AMF species, particularly R. clarus and R. irregularis, contribute to the establishment of young vines exposed to high Cu levels.


Subject(s)
Copper/growth & development , Copper/metabolism , Copper/microbiology , Fungi/growth & development , Fungi/metabolism , Fungi/microbiology , Mycorrhizae/growth & development , Mycorrhizae/metabolism , Mycorrhizae/microbiology , Phosphorus/growth & development , Phosphorus/metabolism , Phosphorus/microbiology , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/microbiology , Soil Pollutants/growth & development , Soil Pollutants/metabolism , Soil Pollutants/microbiology , Vitis/growth & development , Vitis/metabolism , Vitis/microbiology
2.
Indian J Exp Biol ; 2013 Jul; 51(7): 531-542
Article in English | IMSEAR | ID: sea-147624

ABSTRACT

An efficient protocol was standardized for screening of panama wilt resistant Musa paradisiaca cv. Puttabale clones, an endemic cultivar of Karnataka, India. The synergistic effect of 6-benzyleaminopurine (2 to 6 mg/L) and thidiazuron (0.1 to 0.5 mg/L) on MS medium provoked multiple shoot induction from the excised meristem. An average of 30.10 ± 5.95 shoots was produced per propagule at 4 mg/L 6-benzyleaminopurine and 0.3 mg/L thidiazuron concentrations. Elongation of shoots observed on 5 mg/L BAP augmented medium with a mean length of 8.38 ± 0.30 shoots per propagule. For screening of disease resistant clones, multiple shoot buds were mutated with 0.4% ethyl-methane-sulfonate and cultured on MS medium supplemented with Fusarium oxysporum f. sp. cubense (FOC) culture filtrate (5–15%). Two month old co-cultivated secondary hardened plants were used for screening of disease resistance against FOC by the determination of biochemical markers such as total phenol, phenylalanine ammonia lyase, oxidative enzymes like peroxidase, polyphenol oxidase, catalase and PR-proteins like chitinase, β-1-3 glucanase activities. The mutated clones of M. paradisiaca cv. Puttabale cultured on FOC culture filtrate showed significant increase in the levels of biochemical markers as an indicative of acquiring disease resistant characteristics to FOC wilt.


Subject(s)
Biomarkers/analysis , Cells, Cultured , Fusarium/genetics , Fusarium/pathogenicity , Host-Pathogen Interactions , Kinetin/pharmacology , Musa/drug effects , Musa/genetics , Musa/microbiology , Phenylurea Compounds/pharmacology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/microbiology , Thiadiazoles/pharmacology
3.
Biol. Res ; 42(3): 305-313, 2009. ilus, tab
Article in English | LILACS | ID: lil-531964

ABSTRACT

A bacterium that grows and expresses plant growth promotion traits at 4°C was isolated from the rhizospheric soil of Amaranth, cultivated at a high altitude location in the North Western Indian Himalayas. The isolate was Gram negative and the cells appeared as rods (2.91 x 0.71 μm in size). It grew at temperatures ranging from 4 to 30°C, with a growth optimum at 28°C. It exhibited tolerance to a wide pH range (5-10; optimum 8.0) and salt concentrations up to 6 percent (wt/vol). Although it was sensitive to Rifampicin (R 20 μg mi-1), Gentamicin (G 3 μg mi-1), and Streptomycin (S 5 μg mi-1), it showed resistance to higher concentrations of Ampicillin (A 500 μg mi-1), Penicillin (P 300 μg mi-1), Polymixin B sulphate (Pb 100 μg mi-1) and Chloramphenicol (C 200 μg mi-1). The 16S rRNA sequence analysis revealed maximum identity with Pseudomonas lurida. The bacterium produced indole Acetic Acid (IAA) and solubilizes phosphate at 4, 15 and 28°C. It also retained its ability to produce rhamnolipids and siderophores at 15°C. Seed bacterization with the isolate enhanced the germination, shoot and root lengths of thirty-day-old wheat seedlings by 19.2, 30.0 & 22.9 percent respectively, as compared to the un-inoculated controls.


Subject(s)
Amaranthus/microbiology , Cold Temperature , Pseudomonas/metabolism , Soil Microbiology , Amaranthus/growth & development , India , Phylogeny , Plant Roots/growth & development , Plant Roots/microbiology , Plant Shoots/growth & development , Plant Shoots/microbiology , Pseudomonas/genetics , Pseudomonas/growth & development , /genetics
4.
Biocell ; 27(3): 311-318, Dec. 2003.
Article in English | LILACS | ID: lil-384239

ABSTRACT

The induction and improvement of in vitro rhizogenesis of microshoots of Prosopis chilensis (Mol.) Stuntz and Nothofagus alpina (Poep. et Endl. Oerst.) were compared using Agrobacterium rhizogenes (Ar) versus indole-3-butyric acid (IBA) in the culture media. Microshoots of P. chilensis (1-2 cm length), coming from in vitro grown seedlings, were cultivated in a modified Broadleaved Tree Medium (BTMm) containing half salt concentration of macronutrients and 0.05 mg x L(-1) benzilaminopurine (BAP). After 30 days, microshoots with 2-4 leaves were selected and cultured in BTMm-agar in presence or abscense of Ar and in combination with IBA. For N. alpina, the apical shoots with the first 2 true leaves, from 5 weeks old seedlings, were cultured in the abovementioned medium, but with 0.15 mg x L(-1) of BAP. After 2 months, microshoots with 2-3 leaves were selected and cultured in BTMm-agar, supplemented with 5 mg x L(-1) IBA or in liquid BTMm on perlite and, in the presence or absence of A. rhizogenes (Ar) and in combination with 3 mg x L(-1) IBA. Rooting in P. chilensis reached 100.0% when Ar infection was produced in the presence of IBA, increasing both, the number and dry weight of roots. In N. alpina, 90.0% of rooting efficiency was obtained when Ar infection was produced in liquid culture and in the absence of auxin.


Subject(s)
Trees/growth & development , Indoleacetic Acids , Embryonic Induction/drug effects , Prosopis/growth & development , Plant Roots/growth & development , Rhizobium/physiology , Trees/drug effects , Trees/microbiology , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/microbiology , Cells, Cultured , Cell Differentiation/drug effects , Cell Differentiation/physiology , Plant Physiological Phenomena/drug effects , Culture Media/chemistry , Culture Media/pharmacology , Prosopis/drug effects , Prosopis/microbiology , Plant Roots/drug effects , Plant Roots/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL